
Reversible Jump Markov Chain Monte Carlo Algorithm
for Model Selection in Linear Regression

NICK WIBERT, Florida State University

Introduction

Linear regression is a widely studied and implemented statistical method for describing the relationship
between some response variable and a set of predictors based on various assumptions of linearity and normality.
There are many extensions and adjustments to linear regression that have been proposed over the years to
handle the specific challenges of a given application, but one of the more broad topics which is relevant to all
applications of linear regression is the topic of variable selection and/or model selection. Given a response and
a set of predictors, how can we choose the optimal model? Which predictors should be included or excluded,
should these predictors be transformed, etc.?

We restrict our focus here to the specific problemof choosing the optimal subset of predictors for a standard
linear model (which we will refer to from here on out as the problem of model selection). We will simplify
the problem even further by assuming the set of predictors 𝑋 is already arranged in order of significance for
explaining the response 𝑦. So, given a set of 𝑚 predictors, we wish to algorithmically determine the optimal
number of predictors 𝑛 to fit a linear model such that (𝑛 < 𝑚).

Methodology

Problem Statement

We are interested in the standard linear model described by

𝑦 =
𝑛

∑
𝑖=1

𝑥𝑖𝑏𝑖 + 𝜖

where 𝑛 < 𝑚, 𝑥𝑖 represents the predictors, 𝑦 represents the response, and 𝜖 is the randomnoise. We are given 𝑘
independentmeasurementswhichwewill denote as y ∈ ℝ𝑘,X ∈ ℝ𝑘×𝑚, and 𝜖 ∈ ℝ𝑘. Our goal is to estimate the
optimal 𝑛 given these data, which naturally calls for a Bayesian formulation. More specifically, we are looking
for a Bayesian solution to the joint estimation of {𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛}.

Approach

LetX𝑛 ∈ ℝ𝑘×𝑛 denote the first 𝑛 predictors, and b𝑛 = (𝑏1, 𝑏2, … , 𝑏𝑛)𝑇 ∈ ℝ𝑛 represent the 𝑛 correspond-
ing coefficients for the linear model. We will define the likelihood of our data as well as the priors on b𝑛 and 𝑛
as follows:

𝑓(𝑦 ∣ 𝑛, b𝑛) = (1
√2𝜋𝜎2

0
)

𝑘

exp { −1
2𝜎2

0
‖y − X𝑛b𝑛‖2}

𝑓(b𝑛 ∣ 𝑛) = ⎛⎜⎜
⎝

1
√2𝜋𝜎2𝑝

⎞⎟⎟
⎠

𝑘

exp { −1
2𝜎2𝑝

‖b𝑛 − 𝜇𝑏‖2}

𝑓(𝑛) = 1
𝑚

1

Thus, the joint posterior density that we wish to estimate can be described by

𝑓(𝑛, b𝑛 ∣ y) ∝ 𝑓(y ∣ 𝑛, b𝑛)𝑓(b𝑛 ∣ 𝑛)𝑓(𝑛)
We will employ the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm to sample from

this posterior density. Since we are interested in estimating the dimension of the coefficient vector b𝑛, the
dimension of the space from which we are sampling will be constantly changing. The RJMCMC algorithm is an
extension to the standard MCMC methodology which allows for simulating a posterior distribution on spaces
of changing dimensions (“jumping” from dimension to dimension), so it is perfectly suited for the problem of
estimating the number of parameters in a linearmodel. Because RJMCMC is a generalization of theMetropolis-
Hastings algorithm, it exploits the characteristics ofMarkov chains andMonte Carlo sampling such that we can
construct a chain which will converge to the true posterior density formulated above. Therefore if we run the
algorithm for enough iterations, we will (approximately) be drawing samples from this joint posterior density.

Algorithm

Let (𝑛, b𝑛) represent the current sample from the posterior. Furthermore, we define one more likelihood func-
tion of a 𝑑-dimensional normal random vector u as

ℎ(u) = (1
√2𝜋𝜎2𝑟

)
𝑑

exp { −1
2𝜎2𝑟

‖u‖2}

The RJMCMC algorithm is implemented using the steps below.

Reversible Jump Markov Chain Monte Carlo Algorithm

1) Select a candidate for the number of parameters in the model (call this 𝑛∗) by drawing a sample from 𝑓(𝑛).
2) If 𝑛∗ ≥ 𝑛, generate a random vector u ∼ 𝒩(0, 𝜎𝑟𝐼𝑛∗) (where 0 ∈ ℝ𝑛∗ and 𝐼𝑛∗ is the 𝑛∗-dimensional

identity matrix). Let u1 denote the first 𝑛 elements of u, and u2 denote the remaining 𝑛∗ − 𝑛 elements. We
calculate a candidate coefficient vector b𝑛∗ using the formula

b𝑛∗ = [b𝑛
0] + [u1

u2
]

Compute the likelihoods of u and u1, denoting them as ℎ1 = ℎ(u) and ℎ2 = ℎ(u1).
3) If 𝑛∗ < 𝑛, generate a random vector u1 ∼ 𝒩(0, 𝜎𝑟𝐼𝑛∗). Let b1

𝑛 denote the first 𝑛∗ elements of b𝑛, and b2
𝑛

denote the remaining 𝑛 − 𝑛∗ elements. Set u = [u1
b2

𝑛
]. We calculate a candidate coefficient vector b𝑛∗ using

the formula

b𝑛∗ = b𝑛
1 + u1

Compute the likelihoods of u and u1, denoting them as ℎ1 = ℎ(u1) and ℎ2 = ℎ(u).
4) Let 𝐸𝑛 = 1

2𝜎2
0
‖y − X𝑛b𝑛‖2. Compute the accept-reject function:

𝜌 = min {1, 𝑓(𝑛∗, b𝑛∗ ∣ y)ℎ2
𝑓(𝑛, b𝑛 ∣ y)ℎ1

} = min {1, 𝑓(y ∣ 𝑛∗, b𝑛∗)𝑓(b𝑛∗ ∣ 𝑛∗)ℎ2
𝑓(y ∣ 𝑛, b𝑛)𝑓(b𝑛 ∣ 𝑛)ℎ1

}

= min {1, 1
ℎ2

exp{−(𝐸𝑛∗ − 𝐸𝑛)}(2𝜋𝜎2
𝑝)(𝑛−𝑛∗)/2 exp { −1

2𝜎2𝑝
(‖b𝑛∗ − 𝜇𝑏‖2 − ‖b𝑛 − 𝜇𝑏‖2}}

5) Generate 𝑈 ∼ 𝒰[0, 1]. If 𝑈 < 𝜌, we accept the candidate, and then set (𝑛, b𝑛) = (𝑛∗, b𝑛∗). Otherwise,
keep (𝑛, b𝑛) and return to Step 1.

2

Experimental Results

Using Python, we implemented this algorithm on a simulated dataset (See Appendix A for the code used to
simulate the data as well as run the algorithm). The simulation was performed using a set of 𝑚 = 10 predictors,
each with 𝑘 = 10 independent observations. The std. deviation for the likelihood of y was set as 𝜎0 = 0.2; the
std. deviation for the prior on b𝑛 was set as 𝜎𝑝 = 0.3; and the std. deviation for the likelihood of the random
vector u was set to be 𝜎𝑟 = 0.2. The mean for the prior on b𝑛 was set as an 𝑛-dimensional vector of 2’s.

To simulate the data, a “true” value for 𝑛 (let’s call this 𝑛0) was first generated from 𝑓(𝑛). The predictor
set was generated as a 𝑘-by-𝑚 matrix of samples from a standard normal distribution, then scaled by a factor
of 5. The “true” coefficient vector 𝑏 was generated by generating an 𝑛0-dimensional vector of samples from a
standard normal, scaling the vector by 𝜎𝑝, and then adding 𝜇𝑏. Finally, the response y was generated using the
standard linear model formula from the Problem Statement, using only the first 𝑛0 predictors.

This process was repeated 10 times, each time resulting in a new draw for the “true” 𝑛0 and a new dataset
(y,X). The RJMCMC algorithm was run for each dataset to obtain 𝑁 = 100, 000 samples from the posterior.
The histograms in Figure 1 were plotted using the chain of 𝑛 values produced by the algorithm, each acting as
an estimate of the posterior probability of 𝑛 given the data (i.e. 𝑓(𝑛 ∣ y)). Figure 2 displays convergence plots
for each of these chains.

Figure 1: 10 realizations of RJMCMC with 𝑁 = 100, 000

Figure 2: Convergence plots for 10 realizations of RJMCMC

3

In the plot titleswithin the figures on the previous page, we see the “true”𝑛0 whichwas selected for the given
realization. Observe that the mode of each histogram is exactly equal to the optimal number of predictors for
the given data. Furthermore, we see clear convergence of the chain of 𝑛 values to the true 𝑛0 in each realization.

Conclusion

In this experimental setting, we definedX andy to have a simple and clearly linear relationship, sowe should
hope that this algorithm would have no trouble estimating the optimal number of parameters with very high
accuracy. The estimates above show that the posterior density 𝑓(𝑛 ∣ y) in this setting is essentially a probability
distribution whose support consists of one value (𝑓(𝑛 = 𝑛0 ∣ y) = 1 and 0 for all other values of 𝑛). In fact, if
we introduce a sizeable burn-in to our algorithm (say 30,000), it is even more clear (Figure 3).

Figure 3: 10 realizations of RJMCMC with 𝑁 = 100, 000 and a burn-in of 30, 000

Incorrect estimates for 𝑛0 occur earlier on in the chain before converging to the true 𝑛0. During the simula-
tion process, some histograms would occasionally display the wrong value as the mode; however, in these cases,
the true value was always the second most frequent. This is simply a result of the randomness that is part of the
nature of Markov chains and Monte Carlo sampling, but if we could in practice run this algorithm infinitely, it
would have a 100% success rate. We can combat this variability by increasing the number of iterations (within
reason) and introducing a burn-in to throw out the more erratic samples from the beginning of the chain (as
seen in the figure above, this increases clarity of our results).

The results above demonstrate RJMCMC as a powerful algorithm for model selection when the optimal
number of parameters is unknown. It is important to note that the results shown here were obtained in a very
limited setting; not only due to the simplicity of the linear model, but also the assumptions placed upon the data
already being ordered. Further research could incorporate the order of these predictors into the experiment
to investigate the strength of RJMCMC in a more ambiguous, but still linear setting. The performance of the
algorithm in estimating parameter counts formore complicatedmodels or even in a non-linear setting are some
other suggested areas of further study.

4

Appendix A: RJMCMC Simulation in Python

Functions

Simulation

In []: import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg
from matplotlib.ticker import MaxNLocator

In []: # Acceptance-rejection
def accept_reject(X, y, b, b_star, h1, h2, L_std, prior_std):
 n = b.shape[0]
 n_star = b_star.shape[0]

 E1 = (1/(2*L_std**2)) * scipy.linalg.norm(y - X[:,:n_star]@b_star)**2
 E2 = (1/(2*L_std**2)) * scipy.linalg.norm(y - X[:,:n]@b)**2
 numerator = (np.exp(-(E1-E2)) * (2*np.pi*prior_std**2)**((n-n_star)/2) \
 * np.exp((-1/(2*prior_std**2))*(scipy.linalg.norm(b_star - 2*np.ones((n_star,1)))**2 \
 - scipy.linalg.norm(b - 2*np.ones((n,1)))**2)) * h2)
 frac = numerator / h1

 return np.min([1., frac])

Likelihood of u
def h(u, n, var = u_std**2):
 return (1/np.sqrt(2*np.pi*var))**n * np.exp((-1/(2*var))*scipy.linalg.norm(u)**2)

In []: n0_list = []
posterior_estimates = []

for i in range(10):
 # Parameters for simulation
 m = 10
 n0 = np.ceil(np.random.rand()*m).astype('int')
 n0_list.append(n0)
 k = 10
 L_std = 0.2
 prior_std = 0.3
 prior_mu = 2*np.ones((n0,1))
 b = prior_mu + prior_std*np.random.randn(n0,1)
 u_std = 0.2
 N = 100_000

 # generate X and y
 X = 5*np.random.randn(k,m)
 y = X[:,:n0]@b + L_std*np.random.randn(k,1)

 posterior_n = [np.ceil(np.random.rand()*m).astype('int')]
 n = posterior_n[-1]
 posterior_b = [2*np.ones((n,1)) + prior_std*np.random.randn(n,1)]

 while len(posterior_b) < N:
 # (a) Select candidate n*
 n_star = np.ceil(np.random.rand()*m).astype('int')
 n = posterior_n[-1]
 bn = posterior_b[-1]

 # (b)
 if n_star >= n:
 u = np.random.multivariate_normal(mean=np.zeros(n_star),
 cov=(u_std*np.eye(n_star))).reshape(n_star,1)
 u1 = u[:n]
 u2 = u[n:]
 b_star = np.pad(bn, ((0,(n_star - n)),(0,0))) + u

 # Compute likelihoods
 h1 = h(u, n_star)
 h2 = h(u1, n)

Plots

 # (c)
 elif n_star < n:
 u1 = np.random.multivariate_normal(mean=np.zeros(n_star),
 cov=(u_std*np.eye(n_star))).reshape(n_star,1)
 b1 = bn[:n_star]
 b2 = bn[n_star:]
 u = np.vstack((u1,b2))
 b_star = b1 + u1

 # Compute likelihoods
 h2 = h(u, n)
 h1 = h(u1, n_star)

 # (d) Compute acceptance-rejection function
 rho = accept_reject(X, y, bn, b_star, h1, h2, L_std, prior_std)

 # (e)
 if np.random.rand() < rho:
 # Accept candidate
 posterior_b.append(b_star)
 posterior_n.append(n_star)
 else:
 # Keep current b_n and n
 posterior_b.append(bn)
 posterior_n.append(n)

 print(f"Realization {i+1} complete.")
 # 'zip' matches each n with its corresponding b_n, then stores them all
 # in a single index corresponding to its realization
 posterior_estimates.append(list(zip(posterior_n, posterior_b)))

In []: # Create 2-by-10 grid for histograms
fig, axs = plt.subplots(2, 5, figsize=(15, 5))
fig.tight_layout(pad=3)

for i in range(10):
 # Extract 'n' chain
 posterior_n = [posterior_estimates[i][j][0] for j in range(N)]
 row = 0 if i < 5 else 1
 col = i if i < 5 else i - 5
 # bar plot of 'n' chain
 axs[row][col].bar(*np.unique(posterior_n, return_counts=True))
 axs[row][col].set_title(f'Realization {i+1} (n_0 ={n0_list[i]})', fontsize=10)
 axs[row][col].xaxis.set_major_locator(MaxNLocator(integer=True))
 axs[row][col].set_xlim(1,10)

save figure as png
plt.savefig("rjmcmc_hist.png")
plt.show();

In []: # Create 2-by-10 grid for convergence plots
fig, axs = plt.subplots(2, 5, figsize=(15, 5))
fig.tight_layout(pad=3)

for i in range(10):
 # Extract 'n' chain
 posterior_n = [posterior_estimates[i][j][0] for j in range(N)]
 row = 0 if i < 5 else 1
 col = i if i < 5 else i - 5
 # convergence plot of 'n' chain
 axs[row][col].plot(list(range(N)), posterior_n)
 axs[row][col].axhline(y=n0_list[i], color='red', alpha=0.3)
 axs[row][col].set_title(f'Realization {i+1} (n_0 ={n0_list[i]})', fontsize=10)

save figure as png
plt.savefig("rjmcmc_converge.png")
plt.show();

	Introduction
	Methodology
	Problem Statement
	Approach

	Algorithm
	Reversible Jump Markov Chain Monte Carlo Algorithm

	Experimental Results
	Conclusion

